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Abstract—Features derived by deep learning models are use-
ful in challenging classification tasks such as the detection of
COVID-19 in ultrasound lung images. However, in this process,
knowledge-based hand-crafted features engineered by humans
are totally neglected. Hand-crafted features do have a significant
role in performance enhancement in complicated classification
tasks. This paper proposes a fusion of hand-crafted features with
abstract features produced by deep learning in the later stages of
the classification process for COVID-19 detection. Histogram of
Oriented Gradients (HOG) features are used as a hand-crafted
feature for fusion with abstract features produced by VGG16 and
Vision transformer (ViT). The HOG and abstract features are
fused later to improve the classification model’s performance.
A public COVID-19 dataset is used to demonstrate the im-
proved performance of the proposed classification model. Results
show that the proposed fusion technique improves the accuracy
achieved by ViT for normal vs abnormal classification by 1.75%
and for COVID-19 vs bacterial pneumonia classification by 1.04%
when compared with the traditional ViT classification results.
Similarly, when abstract features produced by VGG16 were
fused with HOG features, the classification accuracy achieved
an improvement of approximately 5.81% and 4.94% for normal
vs abnormal and COVID-19 vs bacterial pneumonia classification,
respectively.

Index Terms—Deep learning, Vision transformer, Histogram
of Oriented Gradients, COVID-19, Ultrasound images

I. INTRODUCTION

The global COVID-19 pandemic has infected more than
half a billion people by spreading either directly or indi-
rectly through droplet transmission, resulting in more than
6 million deaths worldwide [1]. The reduction of mortality
and transmission rates of the virus are facilitated by early
detection and monitoring of carriers of the COVID-19 virus
[2]. The current method employed for COVID-19 detection
is the reverse transcription-polymerase chain reaction (RT-
PCR), however, it has been reported to have low sensitivity for
diagnostic purposes [3]. Computed tomography (CT), although
an effective alternative with better sensitivity to detect COVID-
19 [4], is expensive and not a viable option as it requires
sterilization between scans of different patients [3], [5].

Ultrasound (US) imaging is a better alternative to CT or X-
ray as it is portable, easy to disinfect, inexpensive, and non-
ionizing [6], [7]. Yet, COVID-19 detection is a challenging

task because US images are noisy and have low resolution.
Realizing this, several different classification models were
proposed in the literature to detect COVID-19 in lung US
(LUS) images using machine learning and deep learning
algorithms. Several deep learning models, including transfer
learning, were proposed for COVID-19 classification in [8].
Deep learning models such as convolutional neural networks
(CNN), Linear transformers, Vision transformers, EfficientNet,
and gated multilayer perceptron (gMLP) models have been
proposed for the identification of COVID-19 infected LUS
images [9], [10], [11], [12]. There are several review papers
that present the state-of-the-art in COVID-19 detection using
LUS images [13], [14].

In all the above-mentioned works, abstract features were
automatically extracted by the model and used for COVID-19
classification. Such abstract features often provide an adequate
representation of the input image to the classification system.
Recently, in the field of radars’ application, handcrafted fea-
tures along with abstract features extracted by deep learning
network were used for classifying ships in maritime synthetic
aperture radar images [15]. Motivated by [15], in this paper,
a fusion of abstract features and handcrafted features for
identifying COVID-19 LUS images is proposed in this paper.
The premise of this paper is that handcrafted features add user
knowledge or expertise into the classification problem and thus
help in obtaining better classification results. This is the first
work that recognizes the role of handcrafted features in deep
learning models for COVID-19 classification and proposes the
fusion of abstract features derived from deep learning and
handcrafted features.

The paper is organized as follows. In the following section
the methodology adopted in this paper is presented. Results
are presented and discussed in Section III, and conclusions
and future works are presented in Section IV.

II. METHODOLOGY

The proposed framework depicted in Figure 1 comprises
of the fusion of two streams corresponding to the output of
the deep learning model and the HOG features respectively.
The deep learning block provides abstract features obtained
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by pretrained VGG16 or vision transformers (ViT). The di-
mensionality of the HOG features is reduced using principal
component analysis (PCA) block. Finally, the fusion model is
used to fuse the abstract feature F1 with the HOG feature F2
for the final classification as shown in Figure 2. The following
subsections explain briefly the HOG features, the deep learning
model, and the fusion block used in this work.

1) HOG features: Histograms of oriented gradients (HOG)
features have been proposed in [16] for human detection in
image processing applications. HOG features are descriptors
that depend on the gradient magnitude and orientations in
localized portions of an image. The gradients mainly exist
in the peripheral regions of images, making them suitable for
characterizing the shape and local appearance of an object.
In this work, HOG is utilized to extract features from the
A-line, the B-line, the pleural line, and the consolidation
from ultrasound images. Lines and consolidations carry useful
information that improves classification performance. To the
best of our knowledge, this is the first time that HOG features
of ultrasound images are employed for classification tasks.
For the sake of completeness, the various steps involved in
HOG feature extraction are given: (i) The given input image
is resized to 128×128 using a bilinear interpolation algorithm
[17]; (ii) the amplitude G(i, j) and orientation θ(i, j) associ-
ated with the gradient of the resized image are obtained as
follows:

G(i, j) =
√
G2

x(i, j) +G2
y(i, j), (1)

where Gx(i, j) and Gy(i, j) are the gradient amplitudes in x
and y directions respectively, given as

Gx(i, j) = I(i+ 1, j)− I(i− 1, j),

Gy(i, j) = I(i, j + 1)− I(i, j − 1),

where I(i, j) indicates gray intensity in the i-th row and j-th
column of an image. The gradient orientation, ranging from
0− 360o, is given as

θ(i, j) = arctan

[
Gy(i, j)

Gx(i, j)

]
; (2)

(iii) The gradient matrices, namely amplitude and angle, are
divided into 8 × 8 cells, containing 64 pixels each. For each
cell, a 9-bin gradient histogram is computed where each bin
has an angle range of 20o. The output histogram from each
cell has a size of 9× 1; (iv) A block is constructed using four
8× 8 cells, and then the gradient histogram of each block has
a size of 36 × 1 and it is normalized to reduce the effect
of noise and contrast variation for a specific object in the
image; (v) Feature descriptors for each block are produced
by concatenating gradient histograms of each cell.

The feature descriptor for the image is integrated into the
gradient histogram of each block as shown in Figure 3 for
COVID-19 and normal LUS images. The length of the HOG
features is 8100. The HOG features for all the training images
are collected to form a matrix with 8100 columns. PCA of the
matrix of HOG features is done for dimensionality reduction

[18]. Dimensionality reduction has been recommended to
avoid overfitting issues [15]. PCA is summarized as follows.
Features are normalized by subtracting the mean and dividing
by the standard deviation. Then, the covariance matrix for each
feature pair is calculated. Eigen decomposition of the covari-
ance matrix is obtained to determine the principal component
of the data. k eigenvectors have been selected based on the
largest k eigenvalues. In our work k = 64, thus the HOG
features reduce from 8100 to 64.

2) Deep learning: Deep learning models have achieved
remarkable results in a variety of applications, including im-
age classification. Deep learning automatically extracts useful
information from the input images called abstract features. It
feeds these features into fully connected layers with sigmoid
activation functions for final classification. In this paper, a
pretrained VGG16 model [19] and a ViT [20] are considered
for extracting abstract features.

i. Pretrained VGG16: Transfer learning method is used
due to the limited nature of dataset. Transfer learning is
a method in which a deep learning model is trained on a
large dataset like ImageNet, and then the trained model
is reused as a starting point for the next task. In this
paper, the VGG16 model [19] trained using the ImageNet
dataset for more than 1000 classes was used. Pre-existing
fully connected (FC) layers were removed and replaced
by the following layers in succession: (i) global average
pooling; (ii) FC (with 512 neurons); (iii) drop-out layer
(with ratio of 0.5) and (iv) FC with 2 neurons producing
two classes.
All convolution layers except the ones in the last block are
frozen. The last block and the new FC layers are trained
using ultrasound image data. Finally, all the convolutional
layers are frozen, and the new FC layers are removed to
provide the abstract features. These features are fed into
the fusion block for the final decision.

ii. Vision transformer (ViT): The ViT model [20] con-
sists of three primary components; linear embedding,
transformer encoding, and final classification. Initially,
the input image is divided into non-overlapping patches
by the model. Each patch is flattened and fed to a
linear embedding layer to compute learnable embedding
features concatenated with positional information. The
output of the linear embedding layer is then fed to the
transformer encoding layer. The transformer encoding
layer includes a multi-head self attention layer (MSA), a
multi-layer perceptron (MLP), and layer norm (LN). Self-
attention is used by MSA to find the connection between
different patches in the input image. Finally, the output
from the transformer encoder is transferred to the final
classification layer. The final classification layer is an FC
layer with a softmax activation. More details can be found
in [20], [21].

3) Fusion block: Abstract features F1 are fused with the
HOG features F2 using the fusion model shown in Figure 2.
First, F1 and F2 are projected using the FC layer with 256
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neurons. The projected features are concatenated and fed to
three FC layers with 128, 64, and 2 neurons. The two largest
FC layers are followed by Gaussian error linear units (Gelu) as
activation functions. The final, smallest FC layer is followed
by softmax activation function for classification. There are 2
neurons in the last convolutional layer, which correspond to
the number of classes.

Deep Learning 

HOG PCA

FusionF1

F2

Output

Fig. 1: Overall block diagram of the proposed model.

F1

F2

Output

Fusion

Fig. 2: Block diagram of fusion block for combining abstract
features F1 and HOG features F2. Concatenation is indicated
as ⊕ and the fully connected layers by blue rectangles.

(a) (b)

(c) (d)

Fig. 3: Illustrations of HOG features descriptors. (a) and (c)
are the normal LUS image and the COVID-19 LUS image,
respectively, while their HOG features descriptors are shown
in (b) and (d).

III. RESULTS

The performance of the proposed model has been evaluated
using the lung ultrasound images (LUS) dataset provided

publicly by [5], [22]. This data set was gathered from var-
ious resources such as Northumbria, Neruppin, publication,
GrepMed, Butterfly, education platforms such as the point care
of ultraound (POCUS) Altas, and life in fast line (LIFFL) and
consequently, there is heterogeneity in the database due to the
varying formats, brightness and type of sensors used for data
acquisition. Northumbria is a healthcare foundation that serves
a population in the northeast region of the United Kingdom.
As part of their data collection process, a GE Healthcare
convex probe ultrasound machine called the V enueTM , which
operates within a frequency range of (2− 5) MHz was used.
The foundation also implemented the BLUE protocol [23]
to acquire the data. This protocol is particularly effective in
identifying pulmonary pathologies like B-lines and pleural
lines, which are crucial in diagnosing COVID-19 [24]. To
confirm cases of COVID-19, the foundation relied on RT-
PCR tests, while X-ray or CT scans were utilized for detecting
bacterial pneumonia. The dataset consists of 70 videos that are
collected from 44 males and 26 females. Neuruppin data was
acquired at Theodor Fontane Medical School in Neuruppin,
Germany. Like Northumbria, Neuruppin utilized a GE Health-
care ultrasound machine and the BLUE protocol. Neuruppin
provided 31 videos, of which 28 videos were obtained using
a convex probe and 3 videos were obtained using a linear
probe. The US data provided by Neuruppin and Northumbria
accounts for approximately half of the dataset. GrepMed is a
searchable medical image repository that provides 9 videos
acquired with a convex probe and 3 videos acquired with
a linear probe. On the other hand, Butterfly is a portable
ultrasound machine that connects to a smartphone and uses
a convex probe to collect ultrasound data. Using this, a total
of 18 videos were obtained. The POCUS Atlas, an ultrasound
education platform, provided 8 videos collected with a convex
probe and 2 videos collected with a linear probe. Additionally,
the education platform LITFL provides 5 videos that were
acquired using a convex probe. Various publications and
websites contributed to the collection as well, providing 45
videos obtained with a convex probe and 10 videos obtained
with a linear probe.
As a result, the whole dataset consists of a total of 202 videos.
These videos were categorized into COVID-19, bacterial pneu-
monia, and normal (healthy) lung images. Sample images
from each class (COVID-19, bacterial pneumonia, and normal
(healthy) lung) are shown in Figure 4, where the first column
represents the COVID-19 class, the second column depicts
bacterial pneumonia, and the third column shows the healthy
lung. It is observed that there is a difference within the same
class due to data collection from various sources. Furthermore,
only Neuruppin and Northumbria utilized the BLUE protocol
to acquire US data while the protocol followed by other
resources is unknown. Recently, various protocols have been
proposed specifically for the detection of COVID-19, as re-
ported in [3], [25]–[27]. These protocols have shown effective
detection of COVID-19. The placement of the probe in the
patient, along with the timing of acquisition and frequency
of the US probe, play a key role during the collection of
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ultrasound videos. These will influence the quality and clarity
of the pulmonary artifacts such as A-lines and B-lines. These
artifacts are helpful in detecting and classifying COVID-19
[25]–[27]. However, no publicly available data acquired using
a single sensor, following an approved protocol is accessible
for our work. Therefore, the focus of our work is to develop
a model that can improve classification performance using
this challenging dataset. Consequently, our proposed model is
expected to enhance the classification performance using the
collected data that follows the specific protocol for COVID-19
when it becomes available.

In order to train the model, individual frames were extracted
from each video and used as input for training the model.
The frames extracted from the videos were based on the
assumption that all videos have a 3 Hz frame rate with a
maximum of 30 frames per video. Of the 5460 US frames
extracted from the videos, 2061 were attributed to COVID-19,
1944 to bacterial pneumonia, and 1455 to the healthy lung
images. Due to the small dataset, five-fold cross-validation
was used to train and test the proposed model. It may be
noted that the set of extracted frames from each video appears
either in the training fold or in the test folds (and not in both),
thus avoiding any possible correlation between the extracted
frames from the same video. The US images from the datasets
were resized to 128×128 pixels using bilinear interpolation.
All models are trained using a variant of Adam optimizer
(AdamW) with a weight decay of 0.0001 and a learning
rate of 0.001 for 100 epochs. The binary cross entropy is
used as a loss function for VGG16 while sparse categorical
cross entropy was used for ViT. Softmax activation function
is used in the final layer for classification. Details of other
hyperparameters used for ViT are given in Table I. The class
imbalance in the dataset was handled using class weights.

The performance of the proposed fusion model for COVID-
19 classification was evaluated using accuracy, sensitivity,
precision, and F1_ score. The classification results shown in
Table II are for normal (healthy) vs abnormal (COVID-19
and bacterial pneumonia) classification and the classification
results shown in Table III are for COVID-19 vs bacterial
pneumonia classification. It is clear that when HOG features
are fused with abstract features from ViT or VGG16 the
results are improved. When the features from ViT and HOG
features are fused, the accuracy for normal and abnormal
classification is enhanced approximately by 2% while when
the features from VGG16 and HOG features are fused, the
accuracy improved approximately by 6%. COVID-19 and
bacterial pneumonia classifications also improved by fusing
HOG features with abstract features as shown in Table III.
Accuracy improved by nearly 5% and 1% for VGG16 and
ViT, respectively. This result demonstrates that HOG features
complement abstract features from deep learning algorithms
and therefore provide better classification. Moreover, HOG
features yield competitive results to deep learning models as
demonstrated in Tables IV and V for normal versus abnor-
mal classification and COVID-19 versus bacterial pneumonia
classification using traditional classifiers. Out of all imple-

TABLE I: Parameters for training ViT.

Parameter Value

Image size 128
Patch size 32
Projection dimension 32
Heads numbers 4
Transformer layers 8
MLP head units 512, 256

mented traditional classifiers, support vector machine (SVM)
with radial basis function (RBF) kernel provided the best
accuracy of 88.43% with HOG features as input for normal
and abnormal classifications. SVM with RBF also provided the
best accuracy of 85.34% for distinguishing COVID-19 from
bacterial pneumonia.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4: Samples of LUS images of COVID-19 are shown in
the first column, bacterial pneumonia in the second column,
and normal (healthy) lungs in the third column.

IV. CONCLUSIONS AND FUTURE WORKS

Deep learning fails to give good classification accuracy for
low-resolution, noise-like ultrasound images [8]. Hand-crafted
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TABLE II: Normal vs abnormal classification (×100%) of
ViT and VGG16 with and without HOG features.

Models Sensitivity Specificity Precision F1_score Accuracy
ViT 0.8364 0.8364 0.8434 0.8365 0.8528
ViT and HOG 0.8450 0.8450 0.8689 0.8529 0.8703
VGG16 0.7416 0.7416 0.7225 0.7252 0.7939
VGG16 and HOG 0.8205 0.8205 0.8666 0.8292 0.8520

TABLE III: COVID-19 vs bacterial pneumonia classification
(×100%) of ViT and VGG16 with and without HOG
features.

Models Sensitivity Specificity Precision F1_score Accuracy
ViT 0.9024 0.9024 0.8975 0.8973 0.8992
ViT and HOG 0.9076 0.9076 0.9070 0.9068 0.9096
VGG16 0.8139 0.8139 0.8143 0.8114 0.8169
VGG16 and HOG 0.8653 0.8653 0.8810 0.8617 0.8663

features complement abstract features obtained from deep-
learning algorithms to achieve better classification results. In
this work, the fusion of abstract features from a deep-learning-
based algorithm with the hand-crafted feature was proposed.
HOG features were used as hand-crafted features. The results
demonstrate the superiority of such feature fusion.

This paper has provided only preliminary results for the
fusion of hand-crafted features and abstract features from deep
learning methods. Systematic experiments need to be carried
out to further understand the advantages and disadvantages
of the proposed method. Future work will investigate the
fusion of spatial features like Haar, Canny edge detector,
SIFT, KAZE, and AKAZE with abstract features derived from
different deep learning models. Different fusion methods may
also be considered.
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